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A Nonparametric Approach for Mild Cognitive
Impairment to AD Conversion Prediction:
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Abstract—The goal of this study is to introduce a
nonparametric technique for predicting conversion from
Mild Cognitive impairment (MCI)-to-Alzheimer’s disease
(AD). Progression of a slowly progressing disease such as
AD benefits from the use of longitudinal data; however, re-
search till now is limited due to the insufficient patient data
and short follow-up time. A small dataset size invalidates
the estimation of underlying disease progression model;
hence, a supervised nonparametric method is proposed.
While depicting a real-world setting, longitudinal data of
three years are employed for training, whereas only the
baseline visit’s data is used for validation. The train set is
preprocessed for extraction of two dense clusters repre-
senting the subjects who remain stable at MCI or progress
to AD after three years of the baseline visit. Similarity
between these clusters and the test point is calculated in
Euclidean space. Multiple features from two modalities of
biomarkers, i.e., neuropsychological measures (NM) and
structural magnetic resonance imaging (MRI) morphometry
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are also analyzed. Due to the limited MCI dataset size
(NM: 145, MRI: 52, NM+MRI: 29), leave-one-out cross
validation setup is employed for performance evaluation.
The algorithm performance is noted for both unimodal
case and bimodal cases. Superior performance (accuracy:
89.66%, sensitivity: 87.50%, specificity: 92.31%, precision:
93.33%) is delivered by multivariate predictors. Three
notable conclusions of this study are: 1) Longitudinal data
are more powerful than the temporal data, 2) MRI is a
better predictor of MCI-to-AD conversion than NM, and 3)
multivariate predictors outperform single predictor models.

Index Terms—Alzheimer’s disease neuroimaging initia-
tive (ADNI), classification, Euclidean space, feature ranking,
linear regression, longitudinal data, mild cognitive impair-
ment (MCI), nonparametric.

I. INTRODUCTION

A LZHIEMER’S disease (AD) is the most prevalent form
of dementia amongst the elderly and it is the sixth leading

cause of death in USA [1]. AD is a slowly progressing brain
disorder which cannot be prevented, cured, or slowed as of now.
AD can be broadly segregated into three stages. Changes in the
brain may begin 20 years or more before the diagnosis of AD,
which is categorized as the preclinical stage [2]. The second
stage or mild cognitive impairment (MCI) is reached once the
internal brain changes start reflecting upon memory and general
cognitive function [3]. The last stage is when dementia due
to AD has established and is evident through memory loss,
reserved cognition, and impaired daily activities [4].

The MCI stage and onslaught of AD was initially captured us-
ing the commonly known 1984 NINCDS-ADRAD criteria [5].
According to these guidelines, memory impairment and cog-
nitive function decline were the imperative indicatives of de-
mentia. However, in 2011, the National Institute of Ageing and
the Alzheimer’s Association recommended the use of advanced
imaging like magnetic resonance imaging (MRI) for quantifying
structural atrophy of the brain, positron emission tomography
(PET) for reckoning metabolic alterations, and cerebrospinal
fluid (CSF) for measuring pathological amyloid depositions.
Over the past several years, a variety of high-dimensional pat-
tern classification techniques have been designed for identify-
ing MCI versus AD patients based on different modalities of
biomarkers either individually [6]–[12] or combined [13]–[15].

However, over the last few years, the researchers have been
more interested in identifying the MCI patients who are at a
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higher risk of developing AD in the future rather than mere
segregation of the diseased and the nondiseased. Manly et
al. [16] calculated that 10% of the MCI patients develop de-
mentia over the course of time. In other individuals, MCI ei-
ther reverts to normal cognition or remains stable. Efforts are
being made to identify the MCI patients at risk of progressing to
AD (MCIp) and patients who retain a stable diagnosis of MCI
(MCIs). This prediction of whether an MCI subject will develop
AD or not reduces to a classification of MCIp versus MCIs. Early
realization of the disease may result in superior quality of life
for the patients and also benefit in designing of clinical trials
in order to find a cure. In the literature, statistical approaches
[17], [18] and hazard models [19], [20] have been suggested for
risk determination of MCI-to-AD conversion, but these meth-
ods are greatly influenced by the sample size available thus
limiting their application toward MCI subgroup identification.
Numerous high-dimensional and multimodal classification and
regression techniques have also been proposed to perform the
conversion prediction task. Some of the previous studies include
[21]–[24] which are limited in terms of accuracy, and, thus, do
not present reliable results for effective usage of the respec-
tive methods in the prediction of the said conversion. Various
modalities of data have also been verified for their predictive
abilities. Moradi et al. [25], [26] resort to using brain morpho-
metric information embedded in MRI, Davatzikosa [27] employ
both MRI and CSF biomarkers, whereas Gomar et al. [28] use
a combination of MRI, CSF biomarkers, and cognitive scores
to predict a change in diagnostic status of MCI patients. Yet
no consensus has been reached about the best predictors for
MCI-to-AD conversion prediction task.

Most of the previous studies performed prediction using base-
line (BL) data only. Only a few researchers have exploited the
longitudinal data for prognostic purposes [27], [29], [30]. Zhang
et al. [31] and Fan et al. [32], [33] have predicted future clinical
scores and assigned the prediction label and reported the accu-
racy from 60% to 80%. On the contrary, we state that predicting
future clinical scores and using them for classification is highly
restricted due to small number of data and time readings for a
slowly progressing disease such as AD. Resultantly, assump-
tions about underlying longitudinal data distributions, models,
and parameters become inaccurate.

In order to achieve individual classification, we propose a
supervised nonparametric method to predict the development of
AD in the forthcoming years using only the BL readings of an
MCI patient. The contributions of this paper are as follows.

1) Comprehensive study of feature selection amongst the
neuropsychological measures (NM) and MRI-derived
volumetric measures for early AD prediction.

2) Leveraging upon the three year longitudinal training data.
3) Handling of nonconsistent dimensionality of train and

test sets.
4) Nonparametric classification of MCIp and MCIs.

Section II defines the ADNI data used in this study.
Section III describes the methodology followed. Section IV
presents the detailed results of the proposed method, and finally
conclusions are presented in Section V.

II. MATERIALS

A. Participants

Data used in the preparation of this study were obtained from
the ADNI database.1 A detailed information regarding the ADNI
study and patient inclusion/exclusion criteria is provided in the
ADNI General Procedures Manual [34]. Data used in this study
were downloaded on December 8th, 2015.

In this study, we restricted our analysis to the MCI subjects re-
cruited in ADNI-1 followed for a period of three years. Descrip-
tion of MCI and health subjects are described elsewhere [28]
and also on the website.2 In short, MCI patients had minimental
state exam (MMSE) scores between 24 and 30 (inclusive), a
memory complaint, objective memory loss, a clinical dementia
rating score of 0.5, absence of significant impairment in other
cognitive domains, and preserved activities of daily living. Four-
hundred MCI patients were enrolled in ADNI1. Follow ups for
these patients were conducted at 6th month (M06), 12th month
(M12), 18th month (M18), 24th month (M24), and 36th month
(M36), after the BL visit. Over a period of three years, 200 of the
MCI patients were reported to be in MCIp group, whereas 100 of
them remained stable as MCIs. The remaining 100 patients had
unstable diagnosis, thus invalidating their use in this particular
study. In an attempt to validate our method, we used the same
MCIp and MCIs subjects as identified by Moradi et al. [25].

B. Feature Set

1) Biomarker Selection: In ADNI-1, five types of
biomarkers were noted for each MCI patient, i.e., NM, clinical
function scores, MR images, FDG-PET scans, and biochemical
readings via lumbar puncture. A study regarding the dynamics
of disease biomarkers in ADNI presented by Caroli et al. [35]
clearly present that major deterioration of biochemical readings
can be observed prior to MCI development, whereas the clinical
function is the most differentiating once dementia has devel-
oped. This fact is further consolidated in a figure at the ADNI
website3 which advocates that NM and brain imaging (MRI
and PET) best capture the transition of MCI-to-AD. Hence-
forth, in this study, we considered only NM- and MRI-derived
morphometric measures to identify cognitive decline and brain
atrophy, respectively, for early prediction of AD. Neurodegen-
eration measured via FDG-PET are excluded from this study
due to limited data.

2) Feature Selection: The NM used in this study is se-
lected from cognitive assessment measures explained in ADNI
General Procedures Manual [34]. The NM feature set comprised
of Alzheimer’s disease assessment score (ADAS) and scores of
Rey auditory verbal learning test (RAVLT), clock drawing test
(CDT), clock copying test (CCT), logical memory immediate
recall (LIMM), MMSE, trail making test A (TRAA), and trail
making test B (TRAB).

1www.loni.ucla.edu/ADNI
2www.adni-info.org
3http://adni.loni.usc.edu/study-design/background-rationale/
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Apart from cognitive scores, MRI volumetric data provided
by ADNI were downloaded.4 These measures were calculated
by the University of California, San Francisco, Memory and
Ageing Center using the T1 weighted MPRAGE MR scans ac-
quired from a 1.5-T Siemens scanner (dimensions 1 mm ×
1 mm × 1 mm, TR: 20 ms, TE: 5 ms). These images were
preprocessed for gradient warping, scaling, B1 correction, and
N3 inhomogeneity correction by Mayo Clinic [36]–[38]. Cor-
tical reconstruction and volumetric segmentation was then per-
formed using FreeSurfer image analysis suite version 4.3 which
is based on the framework provided by Reuter et al. [39]. In this
framework, an intersubject template was generated by iteratively
aligning all input images to a median image using a registration
method described in [40]. Using the median image for template
generation caters for the within subject bias. Cortical volumetric
measures were obtained after iterative topology correction, non-
linear atlas registration, and nonlinear spherical surface registra-
tion. The segmented images were passed through an intensive
quality control process [41] by Mayo Clinic and provided for use
on ADNI website. For this study, five MRI-derived measures se-
lected were the volumes of entorhinal, fusiform, hippocampus,
middle temporal lobe (MTL), and the ventricles. These volumes
were normalized by intracranial volume to remove interpatient
variances.

3) Feature Preprocessing and Analysis: Longitudinal
studies are inherently faced with the problem of missed follow-
up readings. Currently only those MCI patients “i” are included
in the study which have some feature value “f ” for “jth” feature
over all time points “t” and have confirm belonging to either of
the c classes: MCIp (labeled 1) or MCIs (labeled 0). Hencefor-
ward, each feature is referred to as fjic

. “t” is fixed from BL
(t = 0) to three years (t = 3) with an equal interval of one year
by combining M06 and M12 for the first year, M18 and M24 for
the second year, and M36 for the third year. In this study, miss-
ing feature readings are not imputed or calculated in order to
avoid induction of bias in the results. Therefore, the dataset size
reduced considerably due to one or more missed follow-up read-
ings. Table I lists the demographics of the subjects used in this
study stratified according to different modalities of biomarkers
under consideration.

Table II summarizes the group wise statistics of all “N” fea-
tures used in this study. The measurement Fjc

(t), of each feature
of i instances belonging to one of the c classes at various times
t is calculated by

Fjc
(t) =

∑n
i=1 fjic

(t)
n

for t = 0−3, j = 1 − N, i = 1 − n, c = 0/1. (1)

The standard deviation of Fjc
(t) is also mentioned in Table II.

p value is used to demonstrate the significance of each feature
at various time points. It is worth noting that some features like
CDT and volume of MTL demonstrate low significance at initial
times but are highly differentiating as time proceeds, hence
reinforcing the pertinence of longitudinal data for conversion
prediction.

4www.ida.loni.usc.edu

TABLE I
SUBJECT INFORMATION

NM MCIp (n = 78) MCIs (n = 67)
Age 74.7 ± 6.88 74.72 ± 6.87
Male/Female 45/33 40/27
Education 16 ± 2.78 15.43 ± 3.1
MRI MCIp (n = 27) MCIs (n = 25)
Age 71.24 ± 7.16 75.22 ± 7
Male/Female 17/10 20/5
Education 16 ± 3.19 14.8 ± 3.29N
MRI+NM MCIp (n = 16) MCIs (n = 13)
Age 71.43 ± 7.2 75.1 ± 6.68
Male/Female 9/7 6/7
Education 15.9 ± 2.5 14.9 ± 3.1

NM = Neurophysiological measures, MCI = mild cognitive
impairment, MCIp = MCI subjects progressing to AD in three
years, MCIs = MCI subjects staying stable as MCI in three years,
and n = number of subjects in each category.

III. METHODS

Fig. 1 presents the overview of the nonparametric AD conver-
sion prediction system presented in this paper. The individual
modules are detailed in the following sections.

A. Feature Ranking

The first step in the proposed method was to sift the features
according to their ranks in contribution toward MCIp versus
MCIs segregation. For this we performed the two sampled stu-
dent’s t-test on normalized BL feature readings whose p values
indicate about significance of a particular features toward effec-
tive diagnostics. We designed a wrapper-based system, where
the number of features is incrementally increased to observe the
effect on performance.

B. Classification Setup

Given the limited amount of data which is available for per-
forming the experiments, we used leave-one-out cross valida-
tion where n − 1 data were used for training and 1 instance was
used for validation. Three sets of experiments were designed
which considered different features for the conversion predic-
tion task. In the first two experiments, each of the biomarkers
(NM and MRI) was considered separately, whereas in the third
experiment, all features from both biomarkers were combined.
For performance analysis and comparison accuracy, sensitivity,
specificity, and precision values were recorded.

There are two types of classification methods: Online classifi-
cation and offline classification which are described as follows.

1) Online Classification: In which all features are combined
to determine the class label. Combination of multivariate
features requires normalization or mapping techniques to
cater for bias and scaling issues.

2) Offline Classification: In which each feature is considered
separately to determine a class label, and later majority
voting algorithm (MVA) is employed for final class label.

In this study, we opted for an offline classification. The MVA
formulated for this study is defined later. The feature set initially
comprised of the highest ranked feature, and later more features
were added incrementally according to their ranks.
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TABLE II
STATISTICS OF LONGITUDINAL FEATURES AT THREE TIME POINTS

F(0) F(1) F(2) F(3)

NM MCIp MCIs p val MCIp MCIs p val MCIp MCIs p val MCIp MCIs p val

ADAS 19.85 ± 5.1 15.6 ± 5.5 <0.0001 21.8 ± 5.16 14 ± 7.1 <0.0001 25 ± 6.0 16 ± 5.9 <0.000129.3 ± 8.2 15.9 ± 6 <0.0001
RAVLT 6.6 ± 1.2 8.9 ± 2.7 <0.0001 6.30 ± 1.9 8.7 ± 2.4 <0.0001 5.5 ± 1.8 8.6 ± 2.8 <0.00014.8 ± 1.9 7.7 ± 2.8 <0.0001
CDT 4.04 ± 1.2 4.5 ± 0.7 0.0104 4.14 ± 1.0 4.5 ± 0.6 0.0159 3.9 ± 1.1 4.5 ± 0.6 <0.00013.7 ± 1.2 4.5 ± 0.8 <0.0001
CCT 4.62 ± 0.6 4.7 ± 0.6 0.3344 4.68 ± 0.6 4.8 ± 0.5 0.1144 4.6 ± 0.6 4.7 ± 0.6 0.3034 4.4 ± 0.9 4.7 ± 0.6 0.0123
LIMM 7.26 ± 2.9 8.24 ± 2.7 0.0433 6.60 ± 3.0 9.9 ± 3.4 <0.0001 5.7 ± 3.1 9.8 ± 3.6 <0.00014.4 ± 3.0 9.9 ± 4.3 <0.0001
MMSE 27 ± 1.7 27.8 ± 1.7 0.0046 25.8 ± 2.4 28 ± 1.6 <0.0001 24 ± 2.7 28 ± 2.0 <0.000123 ± 3.3 28 ± 2.1 <0.0001
TRAA 42 ± 19 39.6 ± 13 0.3924 45.2 ± 22 41 ± 17 0.2275 49 ± 26 41 ± 24 0.0508 59 ± 37 42 ± 18 0.0004
TRAB 118 ± 59 112 ± 61 0.5384 142 ± 81 105 ± 54 0.0016 162 ± 91 105 ± 53 <0.0001194 ± 130 121 ± 67 <0.0001

MRI MCIp (×103)MCIs (×103) p val MCIp (×103)MCIs (×103) p val MCIp (×103)MCIs (×103) p val MCIp (×103)MCIs (×103) p val

Entor. 2.9 ± 6.2 3.8 ± 0.54 <0.0001 2.8 ± 0.47 3.8 ± 0.7 <0.0001 2.6 ± 0.45 3.6 ± 0.6 <0.00012.5 ± 0.45 3.7 ± 0.7 <0.0001
Fusiform 15.6 ± 1.8 16.8 ± 1.5 0.0142 15.7 ± 2.0 17 ± 1.7 0.0370 15 ± 1.8 16 ± 1.6 0.0028 15 ± 2.0 16.7 ± 2 0.0043
Hipp 6 ± 0.8 6.9 ± 0.98 0.0012 5.9 ± 0.83 6.8 ± 0.9 0.0007 5.8 ± 0.87 6.7 ± 0.9 0.0005 5.7 ± 0.9 6.7 ± 0.9 0.0003
MT L 17.4 ± 1.7 19.4 ± 1.9 0.0002 17.1 ± 1.7 19. ± 1.9 0.0001 17 ± 1.8 19 ± 1.9 <0.000116 ± 2.1 19 ± 2.2 <0.0001
Ventricles 45.6 ± 22 45 ± 24.7 0.9286 51.3 ± 25.4 47 ± 27 0.5495 57 ± 28.1 45 ± 28 0.1529 55 ± 28 52.7 ± 29 0.7821

ADAS: Alzheimer’s disease assessment score, RAVLT: Reys auditory verbal test, CDT: clock drawing test, CCT: clock copying test, LIMM: immediate recall total score, MMSE:
minimental state examination, TRAA: trail making test A, TRAB: trail making test B, Entor: entorhinal, Hipp: hippocampus, and MTL: midtemporal lobe.

Fig. 1. Overview of the proposed nonparametric technique.

1) Longitudinal Train Set Preprocessing: Many mea-
surements in longitudinal clinical research are based on clin-
icians’ observations, are therefore prone to error and nonunifor-
mity, and, hence, call for denoising measures. In this study, the
train set for each feature j and each class c is represented as Tjc

defined by

Tjc = {[fjic
(0), fjic

(1), fjic
(2), fjic

(3)]}
for j = 1 − N, i = 1 − n, c = 0 − 1 (2)

where Tjc is a set of trajectories of the jth feature values of
i training instances over three years. For serving the purpose
of noise removal, more cohesive trajectory clusters for each
class are extracted from within Tjc of the respective groups.
Let Mjc = fjc (0), fjc (1), fjc (2), fjc (3) be the mean feature
values of the jth feature of all instances of c class at each time
point. The resultant training trajectory cluster for a class c was
the set of “l” nearest trajectories to Mjc in terms of some metric.
Closeness metric used in our case was the pairwise Euclidean
distance. The selection of “l” was subject to provide sufficient
denoising for both majority and minority classes.

2) Train Set Modeling: The training trajectories contained
in the local area defined by the previous step are modeled

assuming a linear time trend. Linear regression is performed to
model each training feature fjic

versus time t, in the resultant
reduced training set according to

fjic
= βo + β1(t) + ε, for j = 1 − N, i = 1 − n, c − 0/1.

(3)
Here, βo is the y-intercept, β1 is the regression coefficient,

and ε is the error term. The error is measured as the difference
in actual value and the modeled value and is reduced in a least
squares sense to obtain best estimates for β0 and β1 .

3) Nonparametric Classification: Most of the sophisti-
cated classification algorithms require the train and test sets to
have equal dimensions. Because of this restriction, many of the
previous studies have either used one time point data only [21],
[22], [25] or they have adopted various algorithms for predicting
future feature values for test instances and then used existing
classifiers [29]–[31]. Contrarily in this study, longitudinal time
point readings are used for training the classifier, while only the
BL readings are used validation. Under this setting, a three-year
ahead prediction of MCI-to-AD conversion is delivered. The
validation point Vj is represented as Vj = {fjw (0)}, i.e., jth
feature value of validation instance w at t = 0. The AD con-
version label c assigned to the validation point Vj according to
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each feature “j” is determined by the classification rule

c(vj ) = min (d(Vj , Tj0), d(Vj , Tj1))

where

d(Vj , Tjc) = ‖Vj − Tjc‖
for j = 1 − N, i = 1 − n (4)

where d(Vj , Tjc) is the average Euclidean distance between a
validation point at BL Vj and the linear training trajectories
Tjc of each class c [42]. The classification label c(Vj) for the
jth validation feature is assigned as 1 if the validation point is
nearer to Tj1 and 0 otherwise.

4) Majority Voting Algorithm: For determining the final
conversion prediction label ω for the validation point V, the
process above is repeated for each of the N features. A vector C
is maintained as follows:

C = [c(V1), c(V2), . . . .., c(VN )] (5)

where c(Vj ) is the class label assigned to validation point Vj

according to (4). Another vector D of length N is maintained
according to

D = [min(d(V1 , T10), d(V1 , T11)), . . . min(d(VN , TN 0),

d(VN , TN 1))] (6)

where each element of D corresponds to the smallest value of
the average distance between the validation point and training
trajectories of each class. The two vectors C and D are input
to the MVA described in Algorithm 1, where n(C = = 1) rep-
resents the number of 1’s contained in the labels vector C and
vice versa. If more features predict progression, i.e., label 1, the
final label ω is set to 1 and vice versa. If an equal number of
features predict conversion and stability for a particular vali-
dation point, the final decision is based on the distance values
calculated in (4). The label corresponding to the minimum value
in D is selected for ω.

IV. RESULTS

The features ranks assigned to the features under the three
experiments are enumerated in Table III. RAVLT was found
to be the most discriminating NM, whereas Entorhinal was the
top ranked MRI volumetric measure. When both biomarkers
are considered collectively, CDT took the first place and TRAB
the last.

Fig. 2 pictorially represents the details of one of the longitu-
dinal features considered in this study. Fig. 2(a) shows a simple
spaghetti plot for the longitudinal ADAS values of individuals
of the two groups. Fig. 2(b) shows the denoised and reduced
trajectories resulting from l nearest trajectory technique for one
of the cross validation folds. It can be visualized that some noisy
instances have been deleted and more cohesive trajectories rep-
resent both groups. Extensive experimentation was performed
to select the value of “l.” In case of NM, the upper limit for
“l” was set to 67, i.e., minority dataset size, while other values
resulted from 25%, 15%, and 5% reduction in minority dataset
size. Hence, the resultant set of value for “l” was {50, 57, 63,

TABLE III
RESULTS OF FEATURE RANKING

Feature Name Unimodal Ranks Bimodal Ranks

NM ADAS 2 6
RAVLT 1 5

CDT 6 1
CCT 3 8

LIMM 5 2
MMSE 4 3
TRAA 7 7
TRAB 8 13

MRI Entorhinal 1 4
Fusiform 4 12

Hippocampus 3 10
MTL 2 11

Ventricles 5 9

ADAS: Alzheimer’s disease assessment score, RAVLT: Reys auditory verbal test,
CDT: clock drawing test, CCT: clock copying test, LIMM: immediate recall total
score, MMSE: minimental state examination, TRAA: trail making test A, TRAB:
trail making test B, and MTL: midtemporal Lobe.

Algorithm 1: Majority Voting Algorithm.
1. procedure: MVA
2. Input: C, D
3. if n(C == 1) > n(C == 0),
4. ω = 1
5. else if n(C == 1) < n(C == 0),
6. ω = 0
7. else if n(C == 1) == n(C == 0),
8. ω = C(1, (D == min(D))
9. end if

10. return ω
11. end procedure

67}. Similar approach for MRI-derived measures resulted in a
set of {19, 21, 23, 25} for “l.” However, in case of bimodal data,
dataset reduction would result in loss of information; hence “l”
was set as the minority dataset size, i.e., 13. For benchmark-
ing, results without preprocessing were also recorded. Fig. 3
graphically displays the recorded accuracy measures with re-
spect to varying values of “l.” It was observed that in case of
NM, 15% and 25% data reduction provided better accuracy
measures owing to effective noise removal. Thus, l = 57 was
selected. However, for MRI volumetric measures, better accu-
racy was obtained when no data removal was performed or when
the dataset size was set equal to the minority class. 5%, 15%,
and 25% reduction resulted in loss of viable information, and,
hence, a lower accuracy measure. “l” was set to 25 in this case.
For bimodal data, accuracy measure was observed to be same
with or without preprocessing.

For independent evaluation of NM and MRI measures,
the performance measures for the proposed classifier are
listed in Tables IV and V, respectively. The variance of each
measure over the cross validation folds is also stated. The
effect of incrementally increasing feature set size according to
feature ranks can be witnessed also. In case of NM, the most
discriminating feature, i.e., RAVLT alone is able to deliver the
best performance in terms of accuracy, i.e., 73.79%. However,
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Fig. 2. (a) Spaghetti plot of ADAS versus time. (b) Spaghetti plot of reduced denoised ADAS versus time.

Fig. 3. Accuracy comparison for selection of “l” for multimodality data:
First with no preprocessing, and then l = minority class size, and 5%,
10%, 15% reduction from the minority class size.

by combining other features, a better estimate for specificity
and precision was observed but considerably low measures of
sensitivity were obtained. A good balance of sensitivity and
specificity was observed with RAVLT as conversion predictor.

On the other hand, using one, two, and four top ranked MRI
volumetric features delivered the same accuracy of 84.62%.
Using single and two top ranked features deliver increased pre-
cision and specificity; thus, we conclude that a single feature,
i.e., volume of Entorhinal is able to deliver the best performance
under the framework presented in this paper.

The performance scores obtained with NM and MRI mea-
sures combined are quantified in Table VI. Best results were
delivered when the feature set comprised of all features from
both biomarkers. Accuracy approximately increased by 15%
and 6% from the case when NM and MRI were considered
separately for classification, respectively. Under the proposed
framework, sensitivity of 87.50%, specificity of 92.31%, and
precision of 93.33% was noted. Low variance of performance

TABLE IV
PERFORMANCE METRICS FOR NM (l = 57)

# of Features Acc (%) Var. Sen (%) Var. Spe (%) Var. Pre Var

1 73.79 19.47 76.92 17.98 70.15 21.26 75.00 18.99
2 72.41 20.11 76.92 17.98 67.16 22.39 73.17 19.87
3 63.45 23.35 48.72 25.31 80.60 15.88 74.51 19.37
4 66.21 22.53 47.44 25.26 88.06 10.67 82.22 14.95
5 68.97 21.55 61.54 23.98 77.61 17.64 76.19 18.43
6 63.45 23.35 46.15 25.17 83.58 13.93 76.60 18.32
7 63.45 23.35 55.13 25.06 73.13 19.95 70.49 21.15
8 58.62 24.43 46.15 25.17 73.13 19.95 66.67 22.64

Acc = accuracy, Sen = sensitivity, Spe = specificity, Pre = precision, Var = variance.

TABLE V
PERFORMANCE METRICS FOR MRI (l = 25)

# of Features Acc (%) Var. Sen (%) Var. Spe (%) Var. Pre Var

1 84.62 13.27 85.19 13.11 84.00 14.00 85.19 13.11
2 84.62 13.27 85.19 13.11 84.00 14.00 85.19 13.11
3 78.85 17.01 81.48 15.67 76.00 19.00 78.57 17.46
4 84.62 13.27 88.89 10.26 80.00 16.67 82.76 14.78
5 78.85 17.01 92.59 7.12 64.00 24.00 73.53 20.05

Acc = accuracy, Sen = sensitivity, Spe = specificity, Pre = precision, Var = variance.

metrics across the cross validation folds further strengthens the
stability of our model.

From the above results, it can be concluded that NM alone
cannot be selected for MCI conversion prediction. The cheap
and easy to obtain and decipher NM are prone to observer
variances. This can be confirmed by larger variance of perfor-
mance metrics over the validation folds as compared to when
MRI-derived measures are used. Brain MRI can record more
accurately the underlying changes that occur when a patient
transits from MCI-to-AD stage. However, our results show that
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TABLE VI
PERFORMANCE METRICS FOR BIMODAL CASE (l =13)

# of Features Acc (%) Var. Sen (%) Var. Spe (%) Var. Pre Var

1 62.07 24.38 31.25 22.92 100.00 0.00 100.00 0.00
2 68.97 22.17 62.50 25.00 76.92 19.23 76.92 19.23
3 79.31 17.00 62.50 25.00 100.00 0.00 100.00 0.00
4 75.86 18.97 68.75 22.92 84.62 14.10 84.62 14.10
5 82.76 14.78 75.00 20.00 92.31 7.69 92.31 7.69
6 82.76 14.78 81.25 16.25 84.62 14.10 86.67 12.38
7 86.21 12.32 81.25 16.25 92.31 7.69 92.86 7.14
8 75.86 18.97 68.75 22.92 84.62 14.10 84.62 14.10
9 75.86 18.97 62.50 25.00 92.31 7.69 90.91 9.09
10 86.21 12.32 81.25 16.25 92.31 7.69 92.86 7.14
11 82.76 14.78 75.00 20.00 92.31 7.69 92.31 7.69
12 86.21 12.32 81.25 16.25 92.31 7.69 92.86 7.14
13 89.66 9.61 87.50 11.67 92.31 7.69 93.33 6.67

Acc = accuracy, Sen = sensitivity, Spe = specificity, Pre = precision, Var = variance.

TABLE VII
COMPARISON WITH PREVIOUS TECHNIQUES

Author Data Validation method Follow-up time Accuracy

Zhang et al. [31] NM, MRI, PET Tenfold cv 0–24 78.40%
Misra et al. [29] MRI Leave-one-out cv 0–15 81.50%
Cui et al. [44] NM, CSF, MRI Tenfold cv 0–24 67.13%
Gomar et al. [28] NM – 0–48 78.00%
Hu et al. [45] MRI – 0–36 76.69%
Proposed NM, MRI Leave-one-out cv 0–36 89.66%

NM: Neuropsychological measures, CSF: cerebro spinal fluid, and MRI: magnetic reso-
nance imaging.

a combination of multimodal biomarkers convey enhanced per-
formance. Our findings are in accordance with various previous
studies [22], [27], [31].

Although direct comparison amongst various MCI-to-AD
conversion prediction techniques is bound on dataset size, fea-
ture set dimensions, cross validation folds, follow-up time, etc.,
Table VII presents a brief summary of competing techniques
based on longitudinal data ADNI data.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new approach for MCI-to-
AD conversion prediction using the available longitudinal data.
Our nonparametric classifier has no limitation for the train and
test sets to have equal dimensions. For classifier training, feature
values at different time points are employed; however, identifi-
cation of MCI progressors is based on BL (single time point)
readings only. The longitudinal feature variation is modeled us-
ing linear regression. The conversion label for an unknown test
point is assigned by measuring similarity between the test point
and the train trajectories in Euclidean space. Our presented tech-
nique out performs other state-of–the-art methods in terms of
both accuracy (89.66%) and precision (93.33%) for detecting
MCI patients who will develop AD within three years of their
BL visit. Specifically, we have shown that 1) from amongst cog-
nitive scores and brain structural atrophy captured via MRI, the
later has better ability to detect MCI progressors, and 2) by com-
bining multiple biomarkers, MCI population can be segregated
into stables and progressors more accurately and precisely.

In continuation of this study and improving prediction per-
formance, we aim to incorporate missing data computation to
obtain a larger dataset size as done by [43]. We would also
be validating other biomarkers like FDG-PET and biochemical
readings to further enhance the disease forecasting.
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